Fast Fourier Transform: Difference between revisions

From Hydrogenaudio Knowledgebase
mNo edit summary
No edit summary
Line 1: Line 1:
{{stub}}
'''Fast Fourier Transform''' ('''FFT''') is an efficient algorithm for calculating the [[DFT|discrete fourier transform]] (DFT). The FFT produces the same results as a DFT but it reduces the execution time by hundreds in some cases. Whereas DFT takes an order of <math>O(n^2)\,</math> computations, FFT takes an order of <math>O(n\,\log\,n)</math>, and is definitely the preferred algorithm to be used in all applications in terms of computational complexity. The FFT in most implementations consistent of samples that are exactly a power of 2, this is commonly known as a ''FFT Radix 2'' algorithm where <math> n = 64,128,256,512,1024,2048</math> etc.   
 
'''Fast Fourier Transform''' ('''FFT''') is an efficient algorithm for calculating the [[discrete fourier transform]] ([[DFT]]). It reduces the execution time by hundreds in some cases. Whereas DFT takes an order of <math>O(n^2)\,</math> computations, FFT takes an order of <math>O(n\,\log\,n)</math>, and is definitely the preferred algorithm to be used in all applications in terms of computational complexity. The FFT in most implementations consistent of samples that are exactly a power of 2, this is commonly known as a ''FFT Radix 2'' algorithm where <math> n = 64,128,256,512,1024,2048</math> etc.   


[[Category:Signal Processing]]
[[Category:Signal Processing]]
[[Category:Technical]]

Revision as of 01:44, 9 April 2010

Fast Fourier Transform (FFT) is an efficient algorithm for calculating the discrete fourier transform (DFT). The FFT produces the same results as a DFT but it reduces the execution time by hundreds in some cases. Whereas DFT takes an order of computations, FFT takes an order of , and is definitely the preferred algorithm to be used in all applications in terms of computational complexity. The FFT in most implementations consistent of samples that are exactly a power of 2, this is commonly known as a FFT Radix 2 algorithm where etc.